Home Page
What is Tier Zero?
Rethinking Oil Spill Response
Beaufort Sea Project Reprints
Ottawa Forum - Inuvik Roundtable Review of Off-shore Arctic Drilling
Plastic Pollution: Solutions
The Algae Threat
The Shallow Water Skimmer (SWS)
The RESTCo House and Adaptable Infrastructure Vision
About RESTCo
Contact Us
Library
Energy Risks
Our Approach
Solutions
Opportunities
Links
Spill Monitor
Fine Print

Stop looking all around the world, just think about where you are, or some project that you really care about, and roll up your sleeves and do something about that.

Jane Goodall

Adaptable Housing and Infrastructure for a (Climate) Changing World

In RESTCo’s work on self-sufficiency for remote communities, we have put considerable work into researching the current energy paradigm, particularly with a view to reducing dependence on external sources, the climate change impact of energy infrastructure choices, and the impact of current practices. There hasn't been much concrete interest in this topic in the decade we have been developing our vision and real technologies, social structures and behaviours to embrace it. People really don't want to hear about the challenges which are upon us. But the future doesn't care about our persistent denial of facts before us.

Future energy security in remote communities in the Canadian context is overshadowed by the already experienced and impending effects of climate change. Some aspects can be anticipated sufficiently to be taken into account now, such as increasing permafrost melt and disappearance of ice coverage. Other aspects can only be speculated upon or are entirely unforeseeable. Approaches to housing and their associated dependence on heat, electrical power, potable water and sewage disposal and treatment is highly dependent on local conditions: whether communities are above or below the tree-line; are in coastal or inland location; and what form of transportation they are dependent on: seasonal roads, sea-lift or air all make critical differences.

The reality is that an unforeseeable proportion of communities are likely to become non viable. The design of new or upgraded housing and infrastructure should anticipate that now or risk having to abandon assets for which there will not be a capacity to replace them within a necessary timeframe or financial resources.

But what is common regardless of circumstances is the need for an air-tight, highly insulated building shell fitted with reliable, energy efficient ventilation, which in whole or in its parts could be relocated. The infrastructure on which the housing is dependent must also be relocatable and able to be reconnected quickly and easily. This is more critical if a building is located on melting permafrost and/or on a coastline vulnerable to erosion, storm surges or sea level rise.

How structures could be moved becomes critical in their design. Will relocation be possible for a structure to be moved in its entirety, in which case size, weight and structural integrity and how it might be moved needs to be addressed, or will a modular form of construction be more feasible, such as NRCan’s 2016 “Rapidly Deployable Northern House Prototype” located at its Bells Corners campus be more practical?

To be protected from external power failure or extreme cold (conditions that could occur simultaneously), energy security requires that a home be maintainable above freezing both for the survival of its occupants and for protection of the essential water systems. This means addressing heat and power needs. Appropriate clothing and bedding become part of the answer. In these conditions the energy efficiency of the house and its systems is less important than that it be safe and reliable. Such design largely eliminates thermal bridging and if associated with high-value insulating windows and reliable ventilation it also reduces the potential for mould growth, a veritable scourge in a lot of remote housing.

To reduce costs and expand local job creation the worst and least healthy of existing house should be dismantled for recovery of construction materials. 2x4s could be used for dividing walls, porches and the like. One of RESTCo’s principals demolished two houses and from the recovered materials built a house, which, at the time, was one of the most energy efficient homes in Canada. (The Osgoode Recycled House)

RESTCo has developed a hybrid structural design comprising a simple wood frame to transfer building loads to a limited number of foundations points, with a Structural Insulated Panel (SIP) building shell. To avoid the typical high cost of transporting large volume building material to remote locations the panels are flat-packed, to be assembled within the destination community and filled with a low density open cell insulating foam. House shapes that maximize useful interior space for their exterior cost are not only more energy efficient but use less building materials and are inherently stronger.

If there is no alternative to building on permafrost and the house has a footprint no larger than about 100 square metres, then the house can be positioned on just three foundation points and will be immune to damage from ground subsidence or heave. It will also be easier to move intact.

The above addresses the first energy priority, namely to minimize energy demand which in turn reduces the necessary capacity of energy supply. A house built to meet that worst condition will have light, heat and power demand under normal conditions.

The falling prices of solar, wind and electrical storage systems is fast improving the potential to reduce dependency on fossil fuels and their generation of greenhouse gases.

RESTCo has from its outset and based on experience of two of its principals advocated the advantages of modular infrastructure. Canada has a lead capability in this realm. Modules built so far have focused on wastewater treatment and diesel cogeneration to service remote communities such as resource development camps and Parks Canada centre. They have also included solar energy systems. That flexibility to add renewable energy and storage capacity with robust fully validated electro-mechanical systems makes them a vital element in future scenarios. That they are portable fits exactly the need outlined above. Such buildings have further scope to incorporate two technological advances that fit the scale of modular infrastructure: air-source heat pumps, capable of being effective at lower temperatures than hitherto; and biomass fueled micro co-generation, production of heat and electrical power. Flexibility for upgrading its technology, doubling up of vital components for reliability and ease of servicing, quality control of pretesting before delivery, portability, ability to supply potable water and treat sewage on site are exactly the set of proven technology that sustainable community needs, and RESTCo espouses. Invention not required.

The most economic scale of the technology best fits small clusters of houses. It removes cost, weight and complexity from individual houses and frees up space. For arctic housing especially, the removal of septic tanks, oil fired furnaces and water heaters removes sources of objectionable, unhealthy odours from a home and makes a notable contribution to indoor health.

RESTCo benefits from the particular knowledge of our principals, who have worked on building housing and infrastructure, designing and building healthy, energy efficient housing, energy systems, recognizing the likely consequences of climate change based on facts in evidence, and developing a vision for a survivable future for remote communities, especially in the Canadian north.

RESTCo has devoted a lot of time and effort to this subject area since 2010, and our principals had already worked the subject prior. For example, visit the Eframe healthy house site. RESTCo has also presented to northern communties multiple times, including at the 2018 Northern Lights conference (PowerPoint slide deck).

RESTCo has an approach, and has developed a suite of techniques, tools, technologies, and network of affiliated organizations, which can do better.

For more information on RESTCo's approach to adaptable housing and infrastructure, please contact us.

The RESTCo House
2018 Northern Lights Presentation (PPT)
The Eframe Healthy House
The Toronto Healthy House
The Eagle Lake First Nation Healthy House
The Osgoode Recycled House
Research House for the Environmentally Hypersensitive
Healthy Housing in the North Towards a Northern Healthy House Demonstration Project
Related Reading
Letter to Minister of Housing
Attachment to the Letter to Minister of Housing
PassivHaus Canada
Home Page Energy Risks Our Approach Solutions Forum About RESTCo Contact Us Library Links
This site is powered by renewable energy! (All material on this Web site copyright RESTCo 2010, 2011 unless otherwise indicated.)